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We estimate capital and labor income Pareto exponents across 475 country-year observations that span
52 countries over half a century (1967-2018). We document two stylized facts: (i) capital income is more
unequally distributed than labor income in the tail; namely, the capital exponent (1-3, median 1.46) is
smaller than labor (2-5, median 3.35), and (ii) capital and labor exponents are nearly uncorrelated. To
explain these findings, we build an incomplete market model with job ladders and capital income risk
that gives rise to a capital income Pareto exponent smaller than but nearly unrelated to the labor expo-
nent. Our results suggest the importance of distinguishing income and wealth inequality.
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1. INTRODUCTION

The purpose of this paper is to estimate and document the Pareto exponents
for capital and labor incomes separately for as many countries and years as possi-
ble. We say that a positive random variable X obeys a power law with Pareto expo-
nent a > 0 if the tail probability decays like a power function: P(X > x) ~ x~ for
large x.! In the context of the income distribution, the Pareto exponent character-
izes the tail heaviness of high incomes and hence top tail inequality. We remain
agnostic about the shape of the income distribution away from the tail. Our study
is motivated by the following two observations. First, we are not aware of a com-
prehensive study that documents the capital and labor income Pareto exponents
separately for many countries and years, despite their importance. Second, the
Pareto exponent has desirable properties relative to other popular inequality mea-
sures such as the Gini coefficient or top income shares.

Consider the first point. Conceptually, capital and labor incomes are different
entities. While the former is the return for providing capital (wealth), the latter is
the return for providing labor services, and there is no particular reason to expect
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More precisely, we say that a random variable X has a Pareto upper tail with exponent a > 0 if
P(X > x) = x7*¢(x) for some slowly varying function #. A function #: (0, o) — R is said to be slowly

varying (at infinity) if it is nonzero for sufficiently large x and lim,_,  #(tx)/¢(x) = 1for each ¢ > 0. See
Bingham et al. (1987) for a comprehensive treatment of the theory of regular variation.
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a relation between the two. Although these two forms of income are conceptually
distinct, it is often put together as just “income” and discussed in the context of
inequality and related policies. If capital and labor incomes are quantitatively dif-
ferent, a policy design based on total income may be misleading. To give one exam-
ple, consider the theory of optimal taxation (Saez, 2001), where the income Pareto
exponent plays an important role. Saez and Stantcheva (2018) carefully distinguish
capital and labor incomes and apply the theory of optimal taxation in the United
States. They find that with an income elasticity of e = 0.5, the optimal top marginal
tax rate is about 50 percent for labor and 60 percent for capital (see their Figure 5).
This difference directly comes from the fact that capital and labor income Pareto
exponents are distinct. Thus, distinguishing capital and labor income inequality is
potentially important for policy designs.

Consider the second point about the desirable properties of Pareto exponents.
In the applied literature such as Piketty (2003) and Piketty and Saez (2003), top
income shares (such as the top 1 percent income share) are more commonly
reported than the income Pareto exponent, perhaps because top shares are sum-
mary statistics that can be computed without specifying functional forms or can be
understood by non-experts without special knowledge of statistics. However,
Atkinson (2005) documents methodological problems regarding the cross-country
comparison of top income shares, citing the differences in tax units (e.g., individual
or household) and legislation (e.g., whether social security benefits are taxable).
One of the reasons such issues arise is because it is not always clear how to define
the population and measure small units.”> Because common inequality measures
such as the Gini coefficient and top income shares require the knowledge of the
entire distribution, these quantities are greatly affected by the definition and mea-
surement of small units. Using the Pareto exponents significantly alleviates these
definition and measurement issues because the Pareto distribution is scale invari-
ant (see Jessen and Mikosch, 2006 for a summary) and its exponent depends only
on the tail behavior, not the entire distribution. For example, doubling the income
of all households in the top 1 percent of the income distribution makes the top 1
percent income share (roughly) twice as large, but the Pareto exponent is unaf-
fected. A similar comment applies to any inequality measure that depends on the
entire distribution, such as the Gini coefficient. While we do not claim that the
Pareto exponent is the only interesting inequality measure, it is certainly a robust
(detail-independent) measure for top tail inequality. See Gabaix (2009, 2016) for
more discussion on the robustness of the Pareto distribution.

In this paper, we use the harmonized Luxembourg Income Study database
(hereafter LIS) to document the capital and labor income Pareto exponents across
all available 475 country-year observations that span 52 countries over half a cen-
tury. We document two empirical findings. First, we find that the capital income
Pareto exponent is roughly in the range 1-3 (with median 1.46) and is smaller than
the labor income Pareto exponent, which ranges between 2 and 5 (with median
3.35). This implies that capital income is more unequally distributed than labor
income. This fact is unsurprising and well known for a specific country or year

’Imagine how to formally distinguish cities, towns, villages, and settlements; continents, islands,

and islets; and inland seas, lakes, and ponds. How to define units and how to measure small units matter
for the size distribution of population, land mass, and water surface area.
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(see, e.g., the Lorenz curve in figure 1 of Saez and Stantcheva, 2018). However, we
are not aware of a comprehensive study that systematically analyzes data sets from
many countries and years, and therefore our finding suggests that capital income
is generally more unequal than labor income. More specifically, using a statistical
test recently developed by Hoga (2018), we formally test the equality of capital and
labor income Pareto exponents and the null is rejected in 86 percent of samples. In
every single case of rejection, the capital exponent is smaller than the labor expo-
nent. Second, we find that the capital income Pareto exponent is nearly unrelated
to the labor exponent. In particular, the correlation between the two exponents
across countries is close to zero.

To explain our empirical findings, we build a simple incomplete market
model with job ladders and capital income risk. In the model, agents get ran-
domly promoted to the next job ladder. Because individual income follows a
random multiplicative process, we obtain a Pareto-tailed labor income distribu-
tion. The agents also save assets and face idiosyncratic investment risk, which
generates a Pareto-tailed wealth (hence capital income) distribution. Because
the capital income Pareto exponent is mainly determined by the asset return dis-
tribution, while the labor income Pareto exponent is mainly determined by the
income growth distribution, the relation between the two is weak. Furthermore,
we analytically characterize the capital and labor income Pareto exponents and
show that the former tends to be smaller than the latter for common parametri-
zation. Our results suggest the importance of distinguishing income and wealth
inequality.

1.1. Related Literature

The power law behavior of income was first recognized by Pareto (1895,
1896, 1897), who used tabulation data of tax returns in many European coun-
tries. More recent research that uses micro data include Reed (2001) for the US,
Reed (2003) for the US, Canada, Sri Lanka, and Bohemia, Nirei and Souma
(2007) for Japan, Toda (2011, 2012) for the US, Jenkins (2017) for the UK, and
Ibragimov and Ibragimov (2018) for Russia. These papers all concern specific
countries and years. Bandourian et a/. (2003) estimate 11 parametric distribu-
tions (some of which exhibit Pareto tails) using 82 household labor income data
sets from Luxembourg Income Study (LIS) as we do, though they neither focus
on the Pareto exponent nor consider capital income. Gabaix (2009) mentions
“[the] tail exponent of income seems to vary between 1.5 and 3,” citing Atkinson
and Piketty (2007), though without providing specific details. Atkinson and
Piketty (2010, Table 13A.23) document income Pareto exponents across many
countries and years estimated from top income share data based on tax returns.
However, these estimates are computed from total income, and because (as
we document in Section 3.3) the capital income Pareto exponents tend to be
smaller than labor exponents, their estimates are best understood as capital
income (hence wealth) Pareto exponents. Benhabib etz a/. (2017) make the point
that wealth is more skewed than income, citing a few Pareto exponent estimates
from Badel ef al. (2018) for income and Vermeulen (2018) for wealth. Using
the 2013-2014 individual income tax data from Romania, Oancea et al. (2018)
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document that the capital income Pareto exponent (1.44) is smaller than the
labor exponent (2.53). Using time series regressions for 21 countries, Bengtsson
and Waldenstrom (2018) document a positive correlation between the gross cap-
ital share in national accounts and the top 1 percent income shares. Their find-
ing can be explained if top income earners tend to have higher capital income
share, which is the case if the capital income Pareto exponent is smaller than the
labor exponent as we document in this paper. As mentioned in the introduction,
there seems to be no comprehensive studies that document the capital and labor
income Pareto exponents separately for many countries and years.

2. DATA

In this section, we describe the data set that we use and discuss its limitations.

2.1. The LIS Database

We use the data from the Luxembourg Income Study LIS, which is a large,
harmonized database of micro-level income data that covers over 50 countries
worldwide and many years since the late 1960s. In many countries, the data derive
from government surveys (e.g., the US data is based on the Current Population
Survey). The LIS data are available at both individual and household levels. We
focus on the household labor and capital income because (i) it is reasonable to
assume that economic decisions such as financial planning are made at the house-
hold level, and (ii) incomes among couples are likely correlated due to assortative
matching in the marriage market (Siow, 2015), which invalidates statistical estima-
tion.? The LIS defines labor income as “cash payments and value of goods and
services received from dependent employment, as well as profits/losses and value
of goods from self-employment, including own consumption.” Capital income is
defined as “cash payments from property and capital (including financial and non-
financial assets), including interest and dividends, rental income and royalties, and
other capital income from investment in self-employment activity.” Together these
two categories make up total factor income. See the LIS 2019 USER GUIDE* for
a detailed summary on how these data are retrieved and calculated.

2.2. Data Limitations

Our analysis draws upon data sets from many different countries that are
harmonized into a common framework by the LIS. However, many details about
the collection of data in the different countries are omitted. For example, we
find evidence of top-coding in some countries and years, as the largest income
order statistic is equal to the second largest.> Top-coding induces an upward

3In our data, we find an average correlation of 0.22 between labor income of husband and wife,
which underpins the conjectured dependency.

“https://www.lisdatacenter.org/wp-content/uploads/files/data-lis-guide.pdf

SAmong all 475 country-year observations, the first- and second-order statistics are equal in 6 cases
for labor income and 11 cases for capital income. Therefore, we conjecture that the top-coding issue is
not severe.
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bias in the estimation of the Pareto exponent. This issue is not necessarily
resolved if, instead, one relies on administrative tax income data, for similar
biases arise such as rich households trying to understate their taxable income
(Atkinson et al., 2011). Burkhauser e al. (2012) detail a method that can be
used to overcome the bias due to top-coding; however, at the end of their paper
they show that the results are robust even if estimates are based on the top-
coded series. For these reasons, we treat the data sets as not being top-coded in
our analysis.

Another limitation of the LIS database is that it is based on government sur-
veys, and the measurement error may be larger compared to administrative data
based on tax returns. The fact that the income distribution in administrative data
is often reported as tabulations, not micro data, causes no problem for estimat-
ing Pareto exponents, as Toda and Wang (2021) provide an efficient estimation
method for such data. In fact, Atkinson and Piketty (2010, Table 13A.23) doc-
ument income Pareto exponents across countries and years estimated from top
income share data. However, their table is based on total income, and because
(as we document in Section 3.3) the capital income Pareto exponents tend to be
smaller than labor exponents, the estimates in Atkinson and Piketty (2010) are best
understood as capital income (hence wealth) Pareto exponents. Because we are not
aware of a comprehensive income database that distinguishes capital and labor
incomes, we decided to use the LIS database.

3. PARETO EXPONENTS ACROSS COUNTRIES AND YEARS

In this section we estimate the capital and labor income Pareto exponents
for all countries and years that are available in the LIS database, which spans
52 countries over half a century (475 country-year observations in total). We
then formally test for the equality of the Pareto exponents of capital and labor
incomes.

3.1. Estimation Method

For each country and year, we suppose that the (capital or labor) income
observations {Xn}i\;l are independent and identically distributed (IID) with cumu-
lative distribution function (CDF) F(x)=P(X, < x). The assumption that the
upper tail of income obeys a power law with Pareto exponent a > 0 translates into
the regular variation condition

€] 1-F(x)=x"%¢(x)

for some slowly varying function # (see footnote 1). Note that the assump-
tion on ¢ involves only the limit as x — co; we are assuming a power law
behavior in the upper tail without taking a stance on the shape of the entire
distribution.

We are interested in estimating the Pareto exponent a for each country and
year. For this purpose, we use the Hill (1975) (maximum likelihood) estimator
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1 1 X(n))
(2 —:== > lo ( )

Here X, denotes the n-th largest order statistic from the sample {Xn}:,:1 and
k e {1, -, N}denotes the number of tail observations used to estimate the Pareto
exponent. Hall (1982) shows that the standard error of @(k)is a(k)/ \/E under flex-
ible assumptions on the CDF (see (3) below). We use the Hill estimator because we
are interested in formally testing the equality of the capital and labor income
Pareto exponents using the method of Hoga (2018), for which the Hill estimator is
required.®

When the population distribution is known to be exactly Pareto (so # in (1)
is zero below the minimum size x,,;,, and constant above this threshold), it is well
known that the Hill estimator for the full sample (k = N) is consistent, asymp-
totically normal, and asymptotically efficient because it is a maximum likelihood
estimator. In practice, the CDF is not exactly Pareto, and the researcher needs to
select an appropriate value of k. For instance, if F(x) satisfies

(3) 1-F(x)=Cx"*(1+Dx? +o(x7*))

with some g > 0, then Hall (1982) shows that choosing k = o(N?//2+®) together
with k - oo as N — oo is sufficient for consistency and asymptotic normality (see
also Embrechts and Kluppelberg, 2013).7 Notice that this choice puts a bound on
the growth rate of k. The expansion (3) covers a wide range of distributions of
interest, such as the z-distribution and the type II extreme value distribution
(Danielsson and de Vries, 1997).

Despite these asymptotic results, it is notoriously difficult to pick k optimally
in finite samples (Hall, 1990; Resnick and Starica, 1997; Danielsson et al., 2001).
In practice, researchers often plot the Hill estimator (2) over a range of & to find
aflatregionorplotthelogranklogl, ..., logN against thelogsizelog Xy, ..., log Xy,
to find a region that exhibits a straight line pattern and choose a size threshold to
run the log-rank regression.® Unfortunately, this graphical approach is not feasi-
ble in our setting because LIS does not allow researchers to download the micro
data for confidentiality concerns (researchers are required to submit their execu-
tion files to conduct statistical analyses) and there is little scope for exploratory
graphical data analysis. In this paper we simply use the largest 5 percent observa-
tions, so

4) k=[0.05N],

°If we are only interested in estimating the Pareto exponents, then there are many alternative meth-
ods available. Ivette Gomes and Guillou (2015) review 13 commonly used estimators. Fedotenkov
(2020) reviews more than 100.

TRecall that we write f(x) = o(g(x))if for all € > 0, we have |f(x)| < e |g(x)|for large enough x.

8Gabaix et al. (2011) study the asymptotic behavior of log rank regression and show that the stan-
dard error is larger by a factor of \/5 than the Hill estimator. However, they do not discuss how to select
the threshold. In their empirical application, they consider the size distribution of population in the US
metropolitan statistical areas, which are already far into the tail and hence the threshold selection is less
of an issue. Ibragimov and Ibragimov (2018) apply the same methodology to Russian household in-
come data and consider the top 5 percent and 10 percent thresholds.
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Figure 1. Histogram and Scatter Plot of Capital and Labor Income Pareto Exponents
[Colour figure can be viewed at wileyonlinelibrary.com)]

which is standard in the literature.® Unreported simulations show that our results
are robust to using other thresholds such as the largest 1 percent and 10 percent
observations, or using a data-driven procedure using the Kolmogorov—Smirnov
distance as in Danielsson et al. (2016).

3.2. Capital and Labor Income Pareto Exponents

We estimate the capital and labor income Pareto exponents for all countries
and years available in the LIS database. The database spans 52 countries across
the years 1967-2018, with a total of 475 country-year observations. The point esti-
mates of the capital and labor income Pareto exponents for each country and year
as well as their standard errors can be found in Table 2 in the Online Appendix. To
avoid small sample issues, we restrict our analysis to countries with at least 1,000
positive observations for income, resulting in (all) 475 country-year pairs for labor
income and 342 for capital income. For visibility, Figure 1 shows the histogram and
scatter plot of the capital and labor income Pareto exponents.

Figure 1a shows the histogram of the capital and labor income Pareto expo-
nents pooled across all available countries and years. The capital and labor income
Pareto exponents are generally in the range 1-3 and 2-5 with medians 1.46 and
3.35, respectively. This suggests that (i) capital income is generally more unequally
distributed than labor income, but (ii) there is significant heterogeneity in both
capital and labor income inequality across countries and years. Figure 1b shows
the scatter plot of the Pareto exponents together with the 45° line. The confidence
interval of the correlation coefficient p is computed assuming all country-year

9An alternative approach is to estimate a parametric distribution F that admits a Pareto upper tail
by maximum likelihood using the entire sample. The double Pareto-lognormal distribution proposed by
Reed (2003) and Reed and Jorgensen (2004) often performs best. See Toda (2012) for a horse race across
several parametric distributions in the context of the US labor income.
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observations are independent and there is no sampling error in the point estimates
of the Pareto exponents. Although it is not obvious how to account for these issues,
doing so will only widen the confidence interval. Therefore the fact that the naive
confidence interval almost contains zero suggests that the correlation between the
two Pareto exponents is weak. Furthermore, for the vast majority of countries and
years, the capital income Pareto exponent is smaller than the labor exponent, again
suggesting that capital income is more unequal than labor income.

How do the Pareto exponents evolve over time? Because many countries
appear only sporadically in the LIS database, we only consider six countries for
which the cross-sectional sample size is large and the time series is long, namely
Canada, Germany, Switzerland, Taiwan, United Kingdom, and United States.
Figure 2 plots the capital and labor Pareto exponents and their 95 percent confi-
dence intervals for these countries. The capital exponent tends to be stable at
around 1-2 and is smaller than the labor exponent.'® Again, capital income appears
to be more unequally distributed than the labor income.

3.3. Testing Equality of Capital and Labor Pareto Exponents

We now formally test whether the capital and labor Pareto exponents are
equal. In particular our test is

Hy o, =a,, against H: ap,#a

ap cap?

where ag,,, aj,, denote the capital and labor income Pareto exponents. Testing the
null hypothesis H,, is complicated by the fact that there is dependency between
labor income {X]ab’n}:’:l and capital income {Xcap’n}:’:l, because individuals who
are rich (receive high labor income) tend to be wealthy and receive high capital
income. Thus, we cannot use the 95 percent confidence intervals in Figure 2 to test
the equality of Pareto exponents. Instead, we apply the test recently developed by
Hoga (2018), which allows for dependence in the data but assumes restrictions on
the growth rate of the tail dependence (see Hoga, 2018, Assumption A2). The test
is based on the inverse of the Hill estimator (2), which we denote by 7: = 1/@. The
test statistic is defined by

(?lab(l) - ?cap(l))z
Ty= ; — — — — —
[y 2 [Fran(0 =7 cap(0) = Fran(D = Feap(1))] “dt

where ¢, € (0, 1) is a tuning parameter and 7() is the inverse Hill estimator

1k X
~ 1 (n)

6 = 1 .

© 7 |kt ] ,; o8 (X([ktj)>

)

19An exception may be Germany before 1983. However, this may be an artifact of the sudden
change in sample size, which was over 40,000 until 1983 and about 5,000 since 1984. Thus, the 5 percent
rule for capital income may be including too many observations in the body of the distribution before
1983.
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Figure 2. Time Evolution of Capital and Labor Income Pareto Exponents
[Colour figure can be viewed at wileyonlinelibrary.com]

Using the Hill estimator based on the subsample with only | k¢| observations
leads to self-normalization of the test statistic 7, and renders a test that is asymp-
totically pivotal. The limiting distribution is

< w(1)?

@ fo W ()= tw(1)Pdr

where W(¢) is a standard Brownian motion. As the test statistic (5) can be com-
puted using only the Hill estimator and conducting numerical integration, there is
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no need to estimate the (potentially difficult) tail covariance. The tuning parameter
t, affects the size of the test in finite samples: high values of 7, make the integral in
(5) based on too few differences of 7, and low values of ¢, yield volatile 7 in (6)
when ¢ is close to #,. Both of these effects may cause size distortions. Therefore, we
set #, = 0.2 following the recommendation of Hoga (2018), who finds that this
choice leads to favorable size properties.'! We reject the null H, when the test statis-
tic Ty is large. According to Table I of Hoga (2018), the 95 percentile of (7) for
t, = 0.2 is 55.44, which we use as the critical value for testing H at 5 percent signif-
icance level.

One issue with the test statistic (5) is that it requires the same number of tail
observations k for both cross-sections of capital and labor incomes. Therefore, the
5 percent rule (4) discussed in Section 3.1 becomes problematic as the number of
people with capital income in our data set is rather small. Many households do not
hold liquid financial wealth and hence have no capital income. The resulting test is
thus not feasible because k,;, based on our 5 percent rule could be wildly different
from k,,. To overcome this issue, we only test the equality of Pareto exponents for
countries that have more than 1,000 positive capital income observations and set
k= [0.0SNcapJ, where N, is the number of positive capital income observations
(these households always have positive labor income), resulting in 342 country-year
observations out of 475. In practice this means that we estimate the Pareto expo-
nent of labor income further in the tail because the sample size of labor income
Ny,p tends to be larger than N,,. However, this is acceptable because the Pareto
approximation tends to fit better for smaller k. Figure 3 presents a scatter plot of
the estimated labor income Pareto exponent @, using 5 percent of the full sample
(V1) and 5 percent of the sample with positive capital income (N,,). The fact that
most points are close to the 45° line supports our claim.

Table 3 in the Online Appendix shows the test results of the null hypothe-
sis Hy: ayyp, = 0gype We reject the null in 294 country-year observations out of 342
(86%) that meet our sample selection criterion. In every single case of rejection, we
have @, > @, and therefore we formally confirm the observation in Section 3.2
that capital income is more unequally distributed than labor income.

4. MobDEL OoF CAPITAL AND LABOR PARETO EXPONENTS

Our empirical analysis in Section 3 suggests that (i) the capital income Pareto
exponent is smaller than the labor one (i.e., capital income is more unequally dis-
tributed than labor income), and (ii) the correlation between capital and labor
income Pareto exponents is weak. To explain these empirical findings, we present
a simple dynamic model of consumption and savings, which builds on one of the
authors’ previous works (Ma et al., 2020; Ma and Toda, 2021). Our model is more
specialized but the characterizations are sharper.

'The choice of #, in Hoga (2018) comes out using an automated selection procedure to choose k,
which is different from our 5 percent rule. An earlier version of our paper uses the same automated
procedure, which leads to very similar results.
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4.1. Income Fluctuation Problem

Time is discrete and denoted byt =0, 1,2, .... Let @, be the financial wealth of
a typical agent at the beginning of period 7 including current income. The agent
chooses consumption ¢, > 0 and saves the remaining wealth a, — ¢,. The period util-
ity function is u: (0, o0) — R, the discount factor is f > 0, the gross return on wealth
between time ¢/ — 1and ¢ is R, > 0, and non-financial income at time ¢ is ¥, > 0. Thus
the agent solves

(8a) maximize E, Z plu(c,)

t=0
(8b) subjectto a, =R, (a,—c)+ Y, 4,
(8c) 0<¢ <a,

where the initial wealth a, = a > 0 is given, (8b) is the budget constraint, and (8c)
implies that the agent cannot borrow (which is without loss of generality according
to the discussion in Chamberlain and Wilson 2000). Throughout the rest of the
paper, we maintain the following assumptions.

Assumption 1. [CRRA utility] The utility functzon exhibits constant relative risk aver-
sion (CRRA) with coefficient y > 0, so u(c) = — lfy # landu(c) =logcify =1
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Assumption 2. [IID shocks] Let G, : = Y,,,/ Y, be gross growth rate of income.
The sequence {Rt +1> Gii } _ols independent and ldentlcally distributed (IID).

These assumptions are similar to Carroll (2020), except that we allow for
stochastic returns on savings. Note that the asset return R,,; and income growth
G,, are potentially mutually dependent. Due to the npassumption, the state vari-
ables of the income fluctuation problem (8) are financial wealth @, > 0 and cur-
rent income Y, > 0. Exploiting homotheticity (Assumption 1), we can reduce the
number of state variables to just one, namely the wealth-income ratio (normalized
wealth) a,: =a,/Y, To see this, letting ¢,: =¢,/Y, be the consumption-income
ratio (normalized consumption), dividing the borrowing constraint (8c) by Y,, we
obtain 0 < ¢, < a,. Similarly, dividing the budget constraint (8b) by Y,;, we obtain

=1/ Yi =R Y,/ Y, /Y, —¢,/Y)+]1
) =(~RI+1/GI+1)(C~Z,—E,)+1
=Rt+1(at_zt)+1’

where R,,;: = R,,;/G,,, is the asset return relative to income growth. As for the

utility function, because
t
=Y =Y, (HGs> ¢
s=1

(here we interpret H o = 1), assuming Y, = 1 (which is without loss of gener-
ality) and y # 1, it follows from (8a) that

[+ [« t
E, Z p'u(c,) =E, Z H ﬂGSI_V lct_
t=0
~l -y

-5 3 (117) 1=

where §,: = ﬁGtI_y. The discussion for y =1 is similar. Therefore, the problem
reduces to an income fluctuation problem with CRRA utility, random discount
factors{p,} . .stochasticreturns{ R, } _ onwealth,and constantincome (¥, = I).
The general theory of income fluctuation problems with stochastic discounting,
returns, and income in a Markovian setting was developed by Ma ez al. (2020).
Therefore, we immediately obtain the following result. In what follows, we drop
the time subscript when no confusion arises.

(10)

Proposition 1. Suppose Assumptions 1 and 2 hold, and

(11) PE[G'"]<1 and PE[RG"]<]1

Then the income fluctuation problem () has a unique solution. The consumption
function can be expressed as c(a, Y) = Y ¢(a/Y), where ¢: (0, 00) — (0, ) is the
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consumption function of the detrended problem (maximizing (10) subject to (9)),
which can be computed by policy function iteration.!?

Proof.  Applying Theorem 2.2 of Ma et al. (2020) to the npcase, a sufficient con-
dition for the existence of a solution to the detrended problem is E[f] <1 and
E[f R] < 1, which is equivalent to (11).

4.2. Tail Behavior of Income and Wealth

We now characterize the tail behavior of income and wealth in the context of
the income fluctuation problem in Section 4.1.

To make the model stationary, suppose that agents survive to the next period
with probability v € (0, 1) (perpetual youth model as in Yaari, 1965). Whenever
agents die, they are replaced by newborn agents. For simplicity, assume that the
discount factor g in (8a) already accounts for survival probability, and that there is
no market for life insurance (allowing for life insurance only changes R to R/v and is
thus mathematically equivalent after reparametrization). Without loss of generality,
suppose that newborn agents start with income Y, = 1. Then the income of a ran-
domly selected agent is Y., where 7 is a geometric random variable with mean %V
By the assumption on income growth, the log income of a randomly selected agent

T
logYr=log(Yr/Yy)= ) logG,

t=1

is a geometric sum of 1prandom variables, for which we can characterize the tail
behavior as follows.

Proposition 2. [Income Pareto exponent] Suppose that P(G>1)>0 and
1 < vE[G?] < oo for some z > 0. Then the cross-sectional income distribution has a
Pareto upper tail, whose exponent is the unique positive solution z = ay to

(12) VE[G"]=1.
Proof.  See Beare and Toda (2017).
To characterize the tail behavior of wealth, we first note that the normalized
consumption function ¢ in Proposition 1 is concave and asymptotically linear with

a specific slope.!3

Proposition3. [Concavity and asymptoticlinearity] Let everything be as in Proposition
1. Then C is concave and

12See Li and Stachurski (2014) and Ma et al. (2020) for details on policy function iteration.
BCarroll and Kimball (1996) showed the sufficiency of hyperbolic absolute risk aversion (HARA,

which includes CRRA) for the concavity of the consumption function. Toda (2021) proved the
necessity.
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@z g 0 otherwise.

(13) im @ _ { 1—(E[pR'])/7if E[pR'"]<],

Proof.  The concavity of ¢ follows from Proposition 2.5 and Remark 2.1 of Ma et
al. (2020). The asymptotic linearity of ¢ follows from Ma and Toda (2021, Theorem
3). Noting that

E[fR'1=E[pG'"(R/G)'"]=E[fR'™],
the limit (13) follows from their Example 2.

Using Proposition 3 and setting p = min {(E[R'~7])!/7, 1}, for high enough
asset level, the detrended budget constraint (9) becomes approximately

Ay RpRya,+1,

which is a random multiplicative process (Kesten (1973) process). Under specific
assumptions, Ma et al. (2020, Theorem 3.3) prove that the upper tail of the sta-
tionary distribution of normalized wealth &, has a Pareto lower bound. Although
a sharp characterization of the tail behavior is generally difficult, in our setting it is
possible to obtain an exact characterization due to concavity and the 11passumption.

Proposition 4. Let p = min {(E[ﬁRl_7])1/7, 1} and H = pR. Suppose that (i) R is
thin-tailed (meaning E[R*] < oo for all z > 0), (ii) logH is non-lattice (not supported
on an evenly spaced grid), and (iii) P(H > 1) > 0and1 < vE[H*] < oo for some z > 0.
Then the cross-sectional normalized wealth distribution is either bounded or has a Pareto
upper tail, in which case the exponent is the unique positive solution z = @ of

(14) vE[H]=1.

The Pareto exponent for wealth and capital income is then @ = min { a,ay }

Proof.  As C is concave by Proposition 3, it is in particular Lipschitz continuous.
Under the maintained assumptions, we can apply Theorem 1.8 of Mirek (2011) to
deduce that the normalized wealth & is either bounded or has a Pareto upper tail with
exponent characterized as the solution to (14), where we have used the asymptotic
linearity of ¢ established in Proposition 3.

By accounting, capital income (excluding capital loss) is

Yeup: =max {R—1,0} (a—c(a))=max {R—-1,0} Y(a—c(a)).

Using Proposition 3, this quantity is approximately equal to
pmax {R—1,0} Ya. The claim « = min {fx, aY} then follows because asset
return R is thin-tailed and a, = Y,&, is the product of two (potentially dependent)
random variables with Pareto upper tails, which inherits the smallest Pareto expo-
nent by the result in Jessen and Mikosch (2006).
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Proposition 4 is significant despite its simplicity. According to the model, we
always have a < ay, typically with a strict inequality as we see in the numerical
example below. This is in sharp contrast to canonical incomplete market general
equilibrium models such as Aiyagari (1994), where agents can save using only a
risk-free asset. In such models, the impossibility theorem of Stachurski and Toda
(2019) implies that the tail behavior of income and wealth is the same, implying
a = ay in our setting.'# Therefore, unlike canonical incomplete market models, our
model can explain the empirical fact that capital income is more unequal than
labor income. The key assumption leading to this conclusion is the presence of
stochastic returns.

We discuss an analytically solvable example to build intuition.

Example 1. Let A > 0 be the length of time of one period and the discount factor
be f =%~ where 6 > 0 is the discount rate. Suppose income grows at a constant
rate g > 0, so G = e%2. Suppose asset return is risk-free, so R = e"™ with r > 0.
Finally, let the survival probability be v = e ™2, where # is the death rate. Then (12)
becomes

l=e"e*% = z=1/g,

so the income Pareto exponent is @y = #/g. (This is the classical result of Wold
and Whittle (1957) in discrete-time.) Suppose in addition that —# +r(1 —y) <0
so that fRI7 < 1. As

H= (E[ﬂRl—y])l/}'Rz (ﬂR)l/y/G=e(%—g)A’

solving (14) the normalized wealth Pareto exponent is

- ny
a=—-
r=n—gvy
assuming r — # — gy > 0. Therefore
5t<aY<=>L<ﬁ<=>r>11+2gy,
r-=n—8vy &

so the wealth (hence capital income) Pareto exponent is smaller than the labor
income Pareto exponent if the return on wealth r is sufficiently large. In summary,
we obtain the following result: suppose — 7+ r(1 — y) < 0 and let ag,y,, @}, be the
capital and labor income Pareto exponents. Then

n .
acap=a1ab:§ if r<n+2gy,

(15) ny n )
a, =———<—=aq.,if r>n+2gy.
cap r—n—-gy g lab n gY

14The original proof in Stachurski and Toda (2019) contained an error; it has been corrected in
Stachurski and Toda (2020).
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Note that the labor income Pareto exponent ay,, = #/g is highly sensitive to the in-
come growth rate g. However, provided that 7 > 5 4+ 2gy, the capital income Pareto
exponent @, is not very sensitive to the value of g because the denominator is
r —n — gy. This example is consistent with our result in Section 3.2 that the capital
Pareto exponent is smaller than the labor Pareto exponent but the two values are
only weakly related.

4.3. Numerical Example

We further examine the tail behavior of income and wealth using a numerical
example of the income fluctuation problem (8). Suppose that asset return is plog-
normal, so logR ~ N((u — 6%/2)A, 6*>A), where A > 0 is the length of one period,
u is the expected return, and o is volatility. Suppose every period the agent is “pro-
moted” with some probability, so the income growth rate is

1 with probability 1-p,

t+1 l+1/ t { ef with probability D,

where p € (0,1) is the promotion probability and g is the log income growth
rate conditional on promotion. We parametrize the promotion probability as

p=1—e/L where L is the expected length of time until a promotion. Using
(12), the labor income Pareto exponent is determined such that
1—
(16) 1= VE[G™] = v(1 = p+ pef™r) = ary = Llog—— 2.
g P

We set the parameter values as in Table 1. One unit of time corresponds to a
year and one period is a quarter, so A = 1/4. The preference parameters (discount
rate and risk aversion) are standard. The death rate of # = 0.025 implies an aver-
age (economically active) age of 1/5 = 40 years. The expected return and volatility
roughly correspond to the stock market. We set the labor income Pareto exponent
to ay = 3, which is roughly the median value in Figure 1. Using the survival prob-
ability v = e7" and (16), the implied value of income growth upon promotion is
g =0.0403. The wealth Pareto exponent determined by (14) is then « = 1.201.

To numerically solve the income fluctuation problem (8), we first detrend it as
in (9) and (10). Suppressing the tildes, the detrended problem becomes

t 1—y
.. S ¢,
maximize E, 2[20 ( Q ﬁ,) 1=,
subjectto @, =R, (a,—c,)+1,
0<¢ <a,

where {Rl, ﬁl}zl is up(though R, and g, are generally correlated). According to Ma
et al. (2020), the Euler equation is

(17) ¢;"=max {E,[B,, Ry ¢,/ .4, } .
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TABLE 1

PARAMETER VALUES
Parameter Symbol Value
Length of one period A 1/4
Discount rate 5 0.04
Relative risk aversion Y 2
Death rate n 0.025
Expected return U 0.07
Volatility c 0.15
Expected time to promotion L 5
Labor income Pareto exponent ay 3

Let ¢(a) be the consumption function. Taking the — 1/y-th power of (17), we obtain

(18) c(@)=min { (E[pRe(d) ™))™ ,a} :

where @’ = R(a — ¢(a)) + 1. Therefore, we can compute the consumption function
using the following variant of the policy function iteration algorithm:

(i) Initialize the consumption function c(a). For example, we can set
c(a) = min {a,1 + ma)}, where m = max {1 - (E[fR'7])!'/7,0} is the the-
oretical asymptotic marginal propensity to consume according to (13).

(if) Update c(a) by the right-hand side of (18), where @’ = R(a — ¢(a)) + 1.

(iii) Iterate the above step until ¢(a) converges.

While the above algorithm has no guarantee to converge unlike the “true” pol-
icy function iteration algorithm discussed in Ma et al. (2020), it has the advantage
of avoiding root-finding and therefore it is fast.

For computational purposes, we discretize the log asset return logR using a
7-point Gauss-Hermite quadrature and use a 100-point exponential grid for nor-
malized wealth @ that spans [0, 10*], with a median grid point of 10. The details
on the exponential grid are discussed in Gouin-Bonenfant and Toda (2018). After
solving the individual problem, we apply the Pareto extrapolation algorithm devel-
oped in Gouin-Bonenfant and Toda (2018) to accurately compute the stationary
(normalized) wealth distribution. Finally, we also simulate an economy with 10°
agents. Figure 4 shows the results.

Figure 4a shows the normalized consumption function ¢(&) in the range
a €0, 100]. Consistent with Proposition 3, the consumption function is roughly
linear for high asset level. Figure 4b shows the size distributions of income Y
normalized wealth @ =a/Y in a log-log plot, both from the theoretical model
and the simulation. The fact that the tail probability P(X > x) exhibits a straight
line pattern in a log-log plot suggests that the size distributions have Pareto
upper tails, consistent with theory. Furthermore, the slope for income is steeper
than that of normalized wealth, so wealth (hence capital income) is more
unequally distributed than labor income.
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[Colour figure can be viewed at wileyonlinelibrary.com]

T

Income
Normalized wealth

1

1

1

4

6

8 10

Income growth rate when promoted (%)

Figure 5. Dependence of Income and Wealth Pareto Exponents on g

[Colour figure can be viewed at wileyonlinelibrary.com].

10!

(b) Income and wealth distributions.

Finally, Figure 5 shows the income and wealth Pareto exponents when we

change the income growth rate g in the range g € [0.02,0.1], fixing other param-
eters. Because the income Pareto exponent is inversely proportional to income
growth by (16), the labor income Pareto exponent is highly sensitive to income
growth. On the contrary, the wealth (capital income) Pareto exponent does not
depend much on income growth by the same intuition as in Example 1. Thus our
model is consistent with our empirical findings in Section 3.2 that capital and labor

income Pareto exponents are only weakly related.
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5. CoNCLUDING REMARKS

The Pareto exponent characterizes the tail heaviness of size distributions.
This paper has systematically estimated and documented capital and labor income
Pareto exponents for 52 countries over half a century (475 country-year observa-
tions). We have found that the capital income Pareto exponent (median 1.46) is
substantially and robustly smaller than the labor exponent (median 3.35), suggest-
ing that capital income (hence wealth) is more unequally distributed than labor
income. This finding has two important implications. First, income inequality
and wealth inequality are different entities and need to be distinguished in policy
debates. Second, canonical Rao Aiyagari models that abstract from capital income
risk—which necessarily imply the same tail behavior for income and wealth dis-
tributions as proved by Stachurski and Toda (2019)—are inadequate for studying
wealth inequality. Our model in Section 4 provides a stylized example for alterna-
tive modeling.

REFERENCES

Aiyagari, S. R., “Uninsured Idiosyncratic Risk and Aggregate Saving,” Quarterly Journal of Economics,
109(3), 65984, 1994.

Atkinson, A. B., “Comparing the Distribution of Top Incomes Across Countries,” Journal of the
European Economic Association, 3(2-3), 393-401, 2005.

Atkinson, A. B, and T. Piketty (eds), Top Incomes over the Twentieth Century. Oxford University Press,
New York, NY, 2007.

Atkinson, A. B., and T. Piketty s(eds), Top Incomes: A Global Perspective. Oxford University Press,
New York, 2010.

Atkinson, A. B., T. Piketty, and E. Saez, “Top Incomes in the Long Run of History,” Journal of
Economic Literature, 49(1), 3-71, 2011.

Badel, A., M. Daly, M. Huggett, and M. Nybom, “Top Earners: Cross-Country Facts,” Federal Reserve
Bank of St. Louis Review, 100(3), 237-57, 2018.

Bandourian, R., J. B. McDonald, and R. S. Turley, “A Comparison of Parametric Models of Income
Distributions Across Countries and Over Time,” Estadistica, 55(164), 135-52, 2003. https://ssrn.
com/abstract=324900

Beare, B., and A. Toda, Geometrically Stopped Markovian Random Growth Processes and Pareto Tails.
2017. https://arxiv.org/abs/1712.01431

Bengtsson, E., and D. Waldenstrom, “Capital Shares and Income Inequality: Evidence from the Long
Run,” Journal of Economic History, 78(3), 712-43, 2018.

Benhabib, J., A. Bisin, and M. Luo, “Earnings Inequality and Other Determinants of Wealth
Inequality,” American Economic Review: Papers and Proceedings, 107(5), 593-7, 2017.

Bingham, N. H., C. Goldie, and J. Teugels, “Regular Variation.” Encyclopedia of Mathematics and Its
Applications. Cambridge University Press, 1987.

Burkhauser, R. V., S. Feng, S. P. Jenkins, and J. Larrimore, “Recent Trends in Top Income Shares in
the United States: Reconciling Estimates from March CPS and IRS Tax Return Data,” Review of
Economics and Statistics, 94(2), 371-88, 2012.

Carroll, C., “Theoretical Foundations of Buffer Stock Saving,” Quantitative Economics, 2020. http://
geconomics.org/ojs/forth/354/354-15.pdf. Forthcoming.

Carroll, C. D., and M. S. Kimball, “On the Concavity of the Consumption Function,” Econometrica,
64(4), 981-92, 1996.

Chamberlain, G., and C. A. Wilson, “Optimal Intertemporal Consumption Under Uncertainty,”
Review of Economic Dynamics, 3(3), 365-95, 2000.

Danielsson, J., and C. G. de Vries, “Tail Index and Quantile Estimation with Very High Frequency
Data,” Journal of Empirical Finance, 4(2-3), 241-57, 1997.

Danielsson, J., L. de Haan, L. Peng, and C. G. de Vries, “Using a Bootstrap Method to Choose the
Sample Fraction in Tail Index Estimation,” Journal of Multivariate Analysis, 76(2), 22648, 2001.

Danielsson, J., L. M. Ergun, L. de Haan, and C. G. de Vries, “Tail Index Estimation,” Quantile driven
threshold selection, 2016. https://ssrn.com/abstract=2717478

© 2021 International Association for Research in Income and Wealth

1076


https://ssrn.com/abstract=324900
https://ssrn.com/abstract=324900
https://arxiv.org/abs/1712.01431
http://qeconomics.org/ojs/forth/354/354-15.pdf
http://qeconomics.org/ojs/forth/354/354-15.pdf
https://ssrn.com/abstract=2717478

Review of Income and Wealth, Series 68, Number 4, December 2022

Embrechts, P, and C. Kluppelberg, and Thomas Mikosch. Modelling Extremal Events: For Insurance
and Finance. vol. 33. Springer Science & Business Media, 2013.

Fedotenkov, I., “A Review of More than One Hundred Pareto-Tail Index Estimators,” Statistica, 80(3),
245-99, 2020.

Gabaix, X., “Power Laws in Economics and Finance,” Annual Review of Economics, 1, 255-93, 2009.

, “Power Laws in Economics: An Introduction,” Journal of Economic Perspectives, 30(1), 185-206,
2016.

Gabaix, X., and R. Ibragimov, “Rank-1/2: A Simple Way to Improve the OLS Estimation of Tail
Exponents,” Journal of Business and Economic Statistics, 29(1), 24-39, 2011.

Gouin-Bonenfant, E., and A. A. Toda, Pareto Extrapolation: An Analytical Framework for Studying
Tail Inequality. 2018. https://ssrn.com/abstract=3260899

Ivette Gomes, M., and A. Guillou, “Extreme Value Theory and Statistics of Univariate Extremes: A
Review,” International Statistical Review, 83(2), 263-92, 2015.

Hall, P, “On Some Simple Estimates of an Exponent of Regular Variation,” Journal of the Royal
Statistical Society, Series B, 44(1), 37-42, 1982.

, “Using the Bootstrap to Estimate Mean Squared Error and Select Smoothing Parameter in

Nonparametric Problems,” Journal of Multivariate Analysis, 32(2), 177-203, 1990.

Hill, B. M., “A Simple General Approach to Inference about the Tail of a Distribution,” Annals of
Statistics, 3(5), 1163-74, 1975.

Hoga, Y., “Detecting Tail Risk Differences in Multivariate Time Series,” Journal of Time Series Analysis,
39(5), 665-89, 2018.

Ibragimov, M., and R. Ibragimov, “Heavy Tails and Upper-Tail Inequality: The Case of Russia,”
Empirical Economics, 54(2), 823-37, 2018.

Jenkins, S. P., “Pareto Models, Top Incomes and Recent Trends in UK Income Inequality,” Economica,
84(334), 261-89, 2017.

Jessen, A. H., and T. Mikosch, “Regularly Varying Functions,” Publications de I’ Institut Mathématique,
80(94), 171-92, 2006.

Kesten, H., “Random Difference Equations and Renewal Theory for Products of Random Matrices,”
Acta Mathematica, 131(1), 207-48, 1973.

Li, H., and J. Stachurski, “Solving the Income Fluctuation Problem with Unbounded Rewards,” Journal
of Economic Dynamics and Control, 45, 353-65, 2014.

Luxembourg Income Study (LIS) Database. http://www.lisdatacenter.org (Multiple Countries;
September 2019—June 2021). Luxembourg: LIS 2021.

Ma, Q., and A. A. Toda, “A Theory of the Saving Rate of the Rich,” Journal of Economic Theory, 192,
105193, 2021.

Ma, Q., J. Stachurski, and A. A. Toda, “The Income Fluctuation Problem and the Evolution of
Wealth,” Journal of Economic Theory, 187, 105003, 2020.

Mirek, M., “Heavy Tail Phenomenon and Convergence to Stable Laws for Iterated Lipschitz Maps,”
Probability Theory and Related Fields, 151(3-4), 705-34, 2011.

Nirei, M., and W. Souma, “A Two Factor Model of Income Distribution Dynamics,” Review of Income
and Wealth, 53(3), 440-59, 2007.

Oancea, B., D. Pirjol, and T. Andrei, “A Pareto Upper Tail for Capital Income Distribution,” Physica
A: Statistical Mechanics and its Applications, 492, 403-17, 2018.

Pareto, V., “La legge della demanda,” Giornale degli Economisti, 10, 59-68, 1895.

, La Courbe de la Répartition de la Richesse. Imprimerie Ch. Viret-Genton, Lausanne, 1896.

, Cours d’Economie Politique. vol. 2. F. Rouge, Lausanne, 1897.

Piketty, T., “Income Inequality in France, 1901-1998,” Journal of Political Economy, 111(5), 1004-42,
2003.

Piketty, T., and E. Saez, “Income Inequality in the United States, 1913-1998,” Quarterly Journal of
Economics, 118(1), 1-41, 2003.

Reed, W. J., “The Pareto, Zipf and Other Power Laws,” Economics Letters, 74(1), 15-9, 2001. https:/
doi.org/10.1016/S0165-1765(01)00524-9.

, “The Pareto Law of Incomes—an Explanation and an Extension,” Physica A, 319(1), 469-86,
2003.

Reed, W. J., and M. Jorgensen, “The Double Pareto-Lognormal Distribution—-a New Parametric Model
for Size Distribution,” Communications in Statistics-Theory and Methods, 33(8), 1733-53, 2004.

Resnick, S., and C. Starica, “Smoothing the Hill Estimator,” Advances in Applied Probability, 29(1),
271-93, 1997.

Saez, E., “Using Elasticities to Derive Optimal Income Tax Rates,” Review of Economic Studies, 68(1),
205-29, 2001.

Saez, E., and S. Stantcheva, “A Simpler Theory of Optimal Capital Taxation,” Journal of Public
Economics, 162, 120-42, 2018.

© 2021 International Association for Research in Income and Wealth

1077


https://ssrn.com/abstract%3D3260899
http://www.lisdatacenter.org
https://doi.org/10.1016/S0165-1765(01)00524-9
https://doi.org/10.1016/S0165-1765(01)00524-9

Review of Income and Wealth, Series 68, Number 4, December 2022

Siow, A., “Testing Becker’s Theory of Positive Assortative Matching,” Journal of Labor Economics,
33(2), 409-41, 2015.

Stachurski, J., and A. A. Toda, “An Impossibility Theorem for Wealth in Heterogeneous-agent Models
with Limited Heterogeneity,” Journal of Economic Theory, 182, 1-24, 2019.

, “Corrigendum to ‘An Impossibility Theorem for Wealth in Heterogeneous-Agent Models with
Limited Heterogeneity’ [Journal of Economic Theory 182 (2019) 1-24],” Journal of Economic
Theory, 188, 105066, 2020.

Toda, A. A., “Income Dynamics with a Stationary Double Pareto Distribution,” Physical Review E,
83(4), 046122, 2011.

, “The Double Power Law in Income Distribution: Explanations and Evidence,” Journal of
Economic Behavior and Organization, 84(1), 364-81, 2012.

, “Necessity of Hyperbolic Absolute Risk Aversion for the Concavity of Consumption
Functions,” Journal of Mathematical Economics, 94, 102460, 2021.

Toda, A. A., and Y. Wang, “Efficient Minimum Distance Estimation of Pareto Exponent from Top
Income Shares,” Journal of Applied Econometrics, 36(2), 228-43, 2021.

Vermeulen, P., “How Fat is the Top Tail of the Wealth Distribution?” Review of Income and Wealth,
64(2), 357-87, 2018.

Wold, H. O. A., and P. Whittle, “A Model Explaining the Pareto Distribution of Wealth,” Econometrica,
25(4), 591-5, 1957.

Yaari, M. E., “Uncertain Lifetime, Life Insurance, and the Theory of the Consumer,” Review of
Economic Studies, 32(2), 137-50, 1965.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of this
article at the publisher’s web site:

Table 2: Point estimates of income Pareto exponents across countries and years.
Table 3: Hypothesis testing of ¢, = 0,
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