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We estimate capital and labor income Pareto exponents across 475 country-year observations that span 
52 countries over half  a century (1967–2018). We document two stylized facts: (i) capital income is more 
unequally distributed than labor income in the tail; namely, the capital exponent (1–3, median 1.46) is 
smaller than labor (2–5, median 3.35), and (ii) capital and labor exponents are nearly uncorrelated. To 
explain these findings, we build an incomplete market model with job ladders and capital income risk 
that gives rise to a capital income Pareto exponent smaller than but nearly unrelated to the labor expo-
nent. Our results suggest the importance of distinguishing income and wealth inequality.
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1. I ntroduction

The purpose of this paper is to estimate and document the Pareto exponents 
for capital and labor incomes separately for as many countries and years as possi-
ble. We say that a positive random variable X obeys a power law with Pareto expo-
nent 𝛼 > 0 if  the tail probability decays like a power function: P(X > x) ∼ x−𝛼 for 
large x.1 In the context of the income distribution, the Pareto exponent character-
izes the tail heaviness of high incomes and hence top tail inequality. We remain 
agnostic about the shape of the income distribution away from the tail. Our study 
is motivated by the following two observations. First, we are not aware of a com-
prehensive study that documents the capital and labor income Pareto exponents 
separately for many countries and years, despite their importance. Second, the 
Pareto exponent has desirable properties relative to other popular inequality mea-
sures such as the Gini coefficient or top income shares.

Consider the first point. Conceptually, capital and labor incomes are different 
entities. While the former is the return for providing capital (wealth), the latter is 
the return for providing labor services, and there is no particular reason to expect 

1More precisely, we say that a random variable X has a Pareto upper tail with exponent 𝛼 > 0 if  
P(X > x) = x−𝛼�(x) for some slowly varying function �. A function �: (0,∞) → ℝ is said to be slowly 
varying (at infinity) if  it is nonzero for sufficiently large x and limx→∞�(tx)∕�(x) = 1 for each t > 0. See 
Bingham et al. (1987) for a comprehensive treatment of the theory of regular variation.
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a relation between the two. Although these two forms of income are conceptually 
distinct, it is often put together as just “income” and discussed in the context of 
inequality and related policies. If  capital and labor incomes are quantitatively dif-
ferent, a policy design based on total income may be misleading. To give one exam-
ple, consider the theory of optimal taxation (Saez, 2001), where the income Pareto 
exponent plays an important role. Saez and Stantcheva (2018) carefully distinguish 
capital and labor incomes and apply the theory of optimal taxation in the United 
States. They find that with an income elasticity of e = 0.5, the optimal top marginal 
tax rate is about 50 percent for labor and 60 percent for capital (see their Figure 5). 
This difference directly comes from the fact that capital and labor income Pareto 
exponents are distinct. Thus, distinguishing capital and labor income inequality is 
potentially important for policy designs.

Consider the second point about the desirable properties of Pareto exponents. 
In the applied literature such as Piketty (2003) and Piketty and Saez (2003), top 
income shares (such as the top 1 percent income share) are more commonly 
reported than the income Pareto exponent, perhaps because top shares are sum-
mary statistics that can be computed without specifying functional forms or can be 
understood by non-experts without special knowledge of statistics. However, 
Atkinson (2005) documents methodological problems regarding the cross-country 
comparison of top income shares, citing the differences in tax units (e.g., individual 
or household) and legislation (e.g., whether social security benefits are taxable). 
One of the reasons such issues arise is because it is not always clear how to define 
the population and measure small units.2 Because common inequality measures 
such as the Gini coefficient and top income shares require the knowledge of the 
entire distribution, these quantities are greatly affected by the definition and mea-
surement of small units. Using the Pareto exponents significantly alleviates these 
definition and measurement issues because the Pareto distribution is scale invari-
ant (see Jessen and Mikosch, 2006 for a summary) and its exponent depends only 
on the tail behavior, not the entire distribution. For example, doubling the income 
of all households in the top 1 percent of the income distribution makes the top 1 
percent income share (roughly) twice as large, but the Pareto exponent is unaf-
fected. A similar comment applies to any inequality measure that depends on the 
entire distribution, such as the Gini coefficient. While we do not claim that the 
Pareto exponent is the only interesting inequality measure, it is certainly a robust 
(detail-independent) measure for top tail inequality. See Gabaix (2009, 2016) for 
more discussion on the robustness of the Pareto distribution.

In this paper, we use the harmonized Luxembourg Income Study database 
(hereafter LIS) to document the capital and labor income Pareto exponents across 
all available 475 country-year observations that span 52 countries over half  a cen-
tury. We document two empirical findings. First, we find that the capital income 
Pareto exponent is roughly in the range 1–3 (with median 1.46) and is smaller than 
the labor income Pareto exponent, which ranges between 2 and 5 (with median 
3.35). This implies that capital income is more unequally distributed than labor 
income. This fact is unsurprising and well known for a specific country or year 

2Imagine how to formally distinguish cities, towns, villages, and settlements; continents, islands, 
and islets; and inland seas, lakes, and ponds. How to define units and how to measure small units matter 
for the size distribution of population, land mass, and water surface area.
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(see, e.g., the Lorenz curve in figure 1 of Saez and Stantcheva, 2018). However, we 
are not aware of a comprehensive study that systematically analyzes data sets from 
many countries and years, and therefore our finding suggests that capital income 
is generally more unequal than labor income. More specifically, using a statistical 
test recently developed by Hoga (2018), we formally test the equality of capital and 
labor income Pareto exponents and the null is rejected in 86 percent of samples. In 
every single case of rejection, the capital exponent is smaller than the labor expo-
nent. Second, we find that the capital income Pareto exponent is nearly unrelated 
to the labor exponent. In particular, the correlation between the two exponents 
across countries is close to zero.

To explain our empirical findings, we build a simple incomplete market 
model with job ladders and capital income risk. In the model, agents get ran-
domly promoted to the next job ladder. Because individual income follows a 
random multiplicative process, we obtain a Pareto-tailed labor income distribu-
tion. The agents also save assets and face idiosyncratic investment risk, which 
generates a Pareto-tailed wealth (hence capital income) distribution. Because 
the capital income Pareto exponent is mainly determined by the asset return dis-
tribution, while the labor income Pareto exponent is mainly determined by the 
income growth distribution, the relation between the two is weak. Furthermore, 
we analytically characterize the capital and labor income Pareto exponents and 
show that the former tends to be smaller than the latter for common parametri-
zation. Our results suggest the importance of  distinguishing income and wealth 
inequality.

1.1.  Related Literature

The power law behavior of  income was first recognized by Pareto (1895, 
1896, 1897), who used tabulation data of  tax returns in many European coun-
tries. More recent research that uses micro data include Reed (2001) for the US, 
Reed (2003) for the US, Canada, Sri Lanka, and Bohemia, Nirei and Souma 
(2007) for Japan, Toda (2011, 2012) for the US, Jenkins (2017) for the UK, and 
Ibragimov and Ibragimov (2018) for Russia. These papers all concern specific 
countries and years. Bandourian et al. (2003) estimate 11 parametric distribu-
tions (some of  which exhibit Pareto tails) using 82 household labor income data 
sets from Luxembourg Income Study (LIS) as we do, though they neither focus 
on the Pareto exponent nor consider capital income. Gabaix (2009) mentions 
“[the] tail exponent of  income seems to vary between 1.5 and 3,” citing Atkinson 
and Piketty (2007), though without providing specific details. Atkinson and 
Piketty (2010, Table 13A.23) document income Pareto exponents across many 
countries and years estimated from top income share data based on tax returns. 
However, these estimates are computed from total income, and because (as 
we document in Section 3.3) the capital income Pareto exponents tend to be 
smaller than labor exponents, their estimates are best understood as capital 
income (hence wealth) Pareto exponents. Benhabib et al. (2017) make the point 
that wealth is more skewed than income, citing a few Pareto exponent estimates 
from Badel et al. (2018) for income and Vermeulen (2018) for wealth. Using 
the 2013–2014 individual income tax data from Romania, Oancea et al. (2018) 
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document that the capital income Pareto exponent (1.44) is smaller than the 
labor exponent (2.53). Using time series regressions for 21 countries, Bengtsson 
and Waldenstrom (2018) document a positive correlation between the gross cap-
ital share in national accounts and the top 1 percent income shares. Their find-
ing can be explained if  top income earners tend to have higher capital income 
share, which is the case if  the capital income Pareto exponent is smaller than the 
labor exponent as we document in this paper. As mentioned in the introduction, 
there seems to be no comprehensive studies that document the capital and labor 
income Pareto exponents separately for many countries and years.

2. D ata

In this section, we describe the data set that we use and discuss its limitations.

2.1.  The LIS Database

We use the data from the Luxembourg Income Study LIS, which is a large, 
harmonized database of micro-level income data that covers over 50 countries 
worldwide and many years since the late 1960s. In many countries, the data derive 
from government surveys (e.g., the US data is based on the Current Population 
Survey). The LIS data are available at both individual and household levels. We 
focus on the household labor and capital income because (i) it is reasonable to 
assume that economic decisions such as financial planning are made at the house-
hold level, and (ii) incomes among couples are likely correlated due to assortative 
matching in the marriage market (Siow, 2015), which invalidates statistical estima-
tion.3 The LIS defines labor income as “cash payments and value of goods and 
services received from dependent employment, as well as profits/losses and value 
of goods from self-employment, including own consumption.” Capital income is 
defined as “cash payments from property and capital (including financial and non-
financial assets), including interest and dividends, rental income and royalties, and 
other capital income from investment in self-employment activity.” Together these 
two categories make up total factor income. See the LIS 2019 USER GUIDE4 for 
a detailed summary on how these data are retrieved and calculated.

2.2.  Data Limitations

Our analysis draws upon data sets from many different countries that are 
harmonized into a common framework by the LIS. However, many details about 
the collection of  data in the different countries are omitted. For example, we 
find evidence of  top-coding in some countries and years, as the largest income 
order statistic is equal to the second largest.5 Top-coding induces an upward 

3In our data, we find an average correlation of 0.22 between labor income of husband and wife, 
which underpins the conjectured dependency.

4https://www.lisda​tacen​ter.org/wp-conte​nt/uploa​ds/files/​data-lis-guide.pdf
5Among all 475 country-year observations, the first- and second-order statistics are equal in 6 cases 

for labor income and 11 cases for capital income. Therefore, we conjecture that the top-coding issue is 
not severe.

https://www.lisdatacenter.org/wp-content/uploads/files/data-lis-guide.pdf
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bias in the estimation of  the Pareto exponent. This issue is not necessarily 
resolved if, instead, one relies on administrative tax income data, for similar 
biases arise such as rich households trying to understate their taxable income 
(Atkinson et al., 2011). Burkhauser et al. (2012) detail a method that can be 
used to overcome the bias due to top-coding; however, at the end of  their paper 
they show that the results are robust even if  estimates are based on the top-
coded series. For these reasons, we treat the data sets as not being top-coded in 
our analysis.

Another limitation of the LIS database is that it is based on government sur-
veys, and the measurement error may be larger compared to administrative data 
based on tax returns. The fact that the income distribution in administrative data 
is often reported as tabulations, not micro data, causes no problem for estimat-
ing Pareto exponents, as Toda and Wang (2021) provide an efficient estimation 
method for such data. In fact, Atkinson and Piketty (2010, Table 13A.23) doc-
ument income Pareto exponents across countries and years estimated from top 
income share data. However, their table is based on total income, and because 
(as we document in Section 3.3) the capital income Pareto exponents tend to be 
smaller than labor exponents, the estimates in Atkinson and Piketty (2010) are best 
understood as capital income (hence wealth) Pareto exponents. Because we are not 
aware of a comprehensive income database that distinguishes capital and labor 
incomes, we decided to use the LIS database.

3.  Pareto Exponents Across Countries and Years

In this section we estimate the capital and labor income Pareto exponents 
for all countries and years that are available in the LIS database, which spans 
52 countries over half  a century (475 country-year observations in total). We 
then formally test for the equality of  the Pareto exponents of  capital and labor 
incomes.

3.1.  Estimation Method

For each country and year, we suppose that the (capital or labor) income 
observations 

{
Xn

}N
n=1

 are independent and identically distributed (IID) with cumu-
lative distribution function (CDF) F (x) = P(Xn ≤ x). The assumption that the 
upper tail of income obeys a power law with Pareto exponent 𝛼 > 0 translates into 
the regular variation condition

for some slowly varying function � (see footnote 1). Note that the assump-
tion  on � involves only the limit as x→∞; we are assuming a power law 
behavior in the upper tail without taking a stance on the shape of  the entire 
distribution.

We are interested in estimating the Pareto exponent � for each country and 
year. For this purpose, we use the Hill (1975) (maximum likelihood) estimator

(1) 1−F (x)=x−��(x)
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Here X(n) denotes the n-th largest order statistic from the sample 
{
Xn

}N
n=1

 and 
k ∈ {1,⋯,N} denotes the number of tail observations used to estimate the Pareto 
exponent. Hall (1982) shows that the standard error of �̂(k) is �̂(k)∕

√
k under flex-

ible assumptions on the CDF (see (3) below). We use the Hill estimator because we 
are interested in formally testing the equality of the capital and labor income 
Pareto exponents using the method of Hoga (2018), for which the Hill estimator is 
required.6

When the population distribution is known to be exactly Pareto (so � in (1) 
is zero below the minimum size xmin and constant above this threshold), it is well 
known that the Hill estimator for the full sample (k = N) is consistent, asymp-
totically normal, and asymptotically efficient because it is a maximum likelihood 
estimator. In practice, the CDF is not exactly Pareto, and the researcher needs to 
select an appropriate value of k. For instance, if  F(x) satisfies

with some 𝛽 > 0, then Hall (1982) shows that choosing k = o(N2�∕(2�+�)) together 
with k →∞ as N →∞ is sufficient for consistency and asymptotic normality (see 
also Embrechts and Kluppelberg, 2013).7 Notice that this choice puts a bound on 
the growth rate of k. The expansion (3) covers a wide range of distributions of 
interest, such as the t-distribution and the type II extreme value distribution 
(Daníelsson and de Vries, 1997).

Despite these asymptotic results, it is notoriously difficult to pick k optimally 
in finite samples (Hall, 1990; Resnick and Stărică, 1997; Danielsson et al., 2001). 
In practice, researchers often plot the Hill estimator (2) over a range of  k to find 
a flat region or plot the log rank log1,…, logN against the log size logX(1),…, logX(N) 
to find a region that exhibits a straight line pattern and choose a size threshold to 
run the log-rank regression.8 Unfortunately, this graphical approach is not feasi-
ble in our setting because LIS does not allow researchers to download the micro 
data for confidentiality concerns (researchers are required to submit their execu-
tion files to conduct statistical analyses) and there is little scope for exploratory 
graphical data analysis. In this paper we simply use the largest 5 percent observa-
tions, so

(2) 1

�̂(k)
: =

1

k

k∑
n=1

log

(
X(n)

X(k)

)
.

6If  we are only interested in estimating the Pareto exponents, then there are many alternative meth-
ods available. Ivette Gomes and Guillou (2015) review 13 commonly used estimators. Fedotenkov 
(2020) reviews more than 100.

(3) 1−F (x)=Cx−�(1+Dx−� +o(x−�))

7Recall that we write f (x) = o(g(x)) if  for all 𝜖 > 0, we have |f (x)| ≤ � |g(x)| for large enough x.
8Gabaix et al. (2011) study the asymptotic behavior of log rank regression and show that the stan-

dard error is larger by a factor of 
√
2 than the Hill estimator. However, they do not discuss how to select 

the threshold. In their empirical application, they consider the size distribution of population in the US 
metropolitan statistical areas, which are already far into the tail and hence the threshold selection is less 
of an issue. Ibragimov and Ibragimov (2018) apply the same methodology to Russian household in-
come data and consider the top 5 percent and 10 percent thresholds.

(4) k=⌊0.05N⌋ ,
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which is standard in the literature.9 Unreported simulations show that our results 
are robust to using other thresholds such as the largest 1 percent and 10 percent 
observations, or using a data-driven procedure using the Kolmogorov–Smirnov 
distance as in Danielsson et al. (2016).

3.2.  Capital and Labor Income Pareto Exponents

We estimate the capital and labor income Pareto exponents for all countries 
and years available in the LIS database. The database spans 52 countries across 
the years 1967–2018, with a total of 475 country-year observations. The point esti-
mates of the capital and labor income Pareto exponents for each country and year 
as well as their standard errors can be found in Table 2 in the Online Appendix. To 
avoid small sample issues, we restrict our analysis to countries with at least 1,000 
positive observations for income, resulting in (all) 475 country-year pairs for labor 
income and 342 for capital income. For visibility, Figure 1 shows the histogram and 
scatter plot of the capital and labor income Pareto exponents.

Figure 1a shows the histogram of the capital and labor income Pareto expo-
nents pooled across all available countries and years. The capital and labor income 
Pareto exponents are generally in the range 1–3 and 2–5 with medians 1.46 and 
3.35, respectively. This suggests that (i) capital income is generally more unequally 
distributed than labor income, but (ii) there is significant heterogeneity in both 
capital and labor income inequality across countries and years. Figure 1b shows 
the scatter plot of the Pareto exponents together with the 45◦ line. The confidence 
interval of the correlation coefficient � is computed assuming all country-year 

9An alternative approach is to estimate a parametric distribution F that admits a Pareto upper tail 
by maximum likelihood using the entire sample. The double Pareto-lognormal distribution proposed by 
Reed (2003) and Reed and Jorgensen (2004) often performs best. See Toda (2012) for a horse race across 
several parametric distributions in the context of the US labor income.

Figure 1.  Histogram and Scatter Plot of Capital and Labor Income Pareto Exponents
 [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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observations are independent and there is no sampling error in the point estimates 
of the Pareto exponents. Although it is not obvious how to account for these issues, 
doing so will only widen the confidence interval. Therefore the fact that the naïve 
confidence interval almost contains zero suggests that the correlation between the 
two Pareto exponents is weak. Furthermore, for the vast majority of countries and 
years, the capital income Pareto exponent is smaller than the labor exponent, again 
suggesting that capital income is more unequal than labor income.

How do the Pareto exponents evolve over time? Because many countries 
appear only sporadically in the LIS database, we only consider six countries for 
which the cross-sectional sample size is large and the time series is long, namely 
Canada, Germany, Switzerland, Taiwan, United Kingdom, and United States. 
Figure 2 plots the capital and labor Pareto exponents and their 95 percent confi-
dence intervals for these countries. The capital exponent tends to be stable at 
around 1–2 and is smaller than the labor exponent.10 Again, capital income appears 
to be more unequally distributed than the labor income.

3.3.  Testing Equality of Capital and Labor Pareto Exponents

We now formally test whether the capital and labor Pareto exponents are 
equal. In particular our test is

where �cap, �lab denote the capital and labor income Pareto exponents. Testing the 
null hypothesis H0 is complicated by the fact that there is dependency between 
labor income 

{
Xlab,n

}N
n=1

 and capital income 
{
Xcap,n

}N
n=1

, because individuals who 
are rich (receive high labor income) tend to be wealthy and receive high capital 
income. Thus, we cannot use the 95 percent confidence intervals in Figure 2 to test 
the equality of Pareto exponents. Instead, we apply the test recently developed by 
Hoga (2018), which allows for dependence in the data but assumes restrictions on 
the growth rate of the tail dependence (see Hoga, 2018, Assumption A2). The test 
is based on the inverse of the Hill estimator (2), which we denote by �̂: = 1∕�̂. The 
test statistic is defined by

where t0 ∈ (0, 1) is a tuning parameter and �̂(t) is the inverse Hill estimator

10An exception may be Germany before 1983. However, this may be an artifact of the sudden 
change in sample size, which was over 40,000 until 1983 and about 5,000 since 1984. Thus, the 5 percent 
rule for capital income may be including too many observations in the body of the distribution before 
1983.

H0: �lab=�cap against H1: �lab≠�cap,

(5) TN =
(�̂ lab(1)− �̂cap(1))

2

∫ 1
t0
t2
[
(�̂ lab(t)− �̂cap(t))− (�̂ lab(1)− �̂cap(1))

]2
dt

,

(6) �̂(t): =
1

⌊kt⌋
⌊kt⌋�
n=1

log

�
X(n)

X(⌊kt⌋)

�
.
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Using the Hill estimator based on the subsample with only ⌊kt⌋ observations 
leads to self-normalization of the test statistic TN and renders a test that is asymp-
totically pivotal. The limiting distribution is

where W(t) is a standard Brownian motion. As the test statistic (5) can be com-
puted using only the Hill estimator and conducting numerical integration, there is 

(7) T
N

d
→

W (1)2

∫ 1
t0
[W (t)− tW (1)]2dt

,

Figure 2.  Time Evolution of Capital and Labor Income Pareto Exponents
 [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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no need to estimate the (potentially difficult) tail covariance. The tuning parameter 
t0 affects the size of the test in finite samples: high values of t0 make the integral in 
(5) based on too few differences of �̂ , and low values of t0 yield volatile �̂  in (6) 
when t is close to t0. Both of these effects may cause size distortions. Therefore, we 
set t0 = 0.2 following the recommendation of Hoga (2018), who finds that this 
choice leads to favorable size properties.11 We reject the null H0 when the test statis-
tic TN is large. According to Table I of Hoga (2018), the 95 percentile of (7) for 
t0 = 0.2 is 55.44, which we use as the critical value for testing H0 at 5 percent signif-
icance level.

One issue with the test statistic (5) is that it requires the same number of tail 
observations k for both cross-sections of capital and labor incomes. Therefore, the 
5 percent rule (4) discussed in Section 3.1 becomes problematic as the number of 
people with capital income in our data set is rather small. Many households do not 
hold liquid financial wealth and hence have no capital income. The resulting test is 
thus not feasible because klab based on our 5 percent rule could be wildly different 
from kcap. To overcome this issue, we only test the equality of Pareto exponents for 
countries that have more than 1,000 positive capital income observations and set 
k =

⌊
0.05Ncap

⌋
, where Ncap is the number of positive capital income observations 

(these households always have positive labor income), resulting in 342 country-year 
observations out of 475. In practice this means that we estimate the Pareto expo-
nent of labor income further in the tail because the sample size of labor income 
Nlab tends to be larger than Ncap. However, this is acceptable because the Pareto 
approximation tends to fit better for smaller k. Figure 3 presents a scatter plot of 
the estimated labor income Pareto exponent �̂lab using 5 percent of the full sample 
(Nlab) and 5 percent of the sample with positive capital income (Ncap). The fact that 
most points are close to the 45◦ line supports our claim.

Table 3 in the Online Appendix shows the test results of the null hypothe-
sis H0: �lab = �cap. We reject the null in 294 country-year observations out of 342 
(86%) that meet our sample selection criterion. In every single case of rejection, we 
have �𝛼lab > �𝛼cap, and therefore we formally confirm the observation in Section 3.2 
that capital income is more unequally distributed than labor income.

4.  Model of Capital and Labor Pareto Exponents

Our empirical analysis in Section 3 suggests that (i) the capital income Pareto 
exponent is smaller than the labor one (i.e., capital income is more unequally dis-
tributed than labor income), and (ii) the correlation between capital and labor 
income Pareto exponents is weak. To explain these empirical findings, we present 
a simple dynamic model of consumption and savings, which builds on one of the 
authors’ previous works (Ma et al., 2020; Ma and Toda, 2021). Our model is more 
specialized but the characterizations are sharper.

11The choice of t0 in Hoga (2018) comes out using an automated selection procedure to choose k, 
which is different from our 5 percent rule. An earlier version of our paper uses the same automated 
procedure, which leads to very similar results.
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4.1.  Income Fluctuation Problem

Time is discrete and denoted by t = 0, 1, 2,…. Let at be the financial wealth of 
a typical agent at the beginning of period t including current income. The agent 
chooses consumption ct ≥ 0 and saves the remaining wealth at − ct. The period util-
ity function is u: (0,∞)→ ℝ, the discount factor is 𝛽 > 0, the gross return on wealth 
between time t − 1 and t is Rt > 0, and non-financial income at time t is Yt > 0. Thus 
the agent solves 

where the initial wealth a0 = a > 0 is given, (8b) is the budget constraint, and (8c) 
implies that the agent cannot borrow (which is without loss of generality according 
to the discussion in Chamberlain and Wilson 2000). Throughout the rest of the 
paper, we maintain the following assumptions.

Assumption 1.  [CRRA utility] The utility function exhibits constant relative risk aver-
sion (CRRA) with coefficient 𝛾 > 0, so u(c) = c1−�

1− �
 if � ≠ 1 and u(c) = logc if � = 1.

(8a) maximize E0

∞∑
t=0

�
tu(ct)

(8b) subject to at+1=Rt+1(at−ct)+Yt+1,

(8c) 0≤ ct≤at,

Figure 3.  Labor Pareto Exponent with Full and Positive Capital Income Samples 
[Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Assumption 2.  [IID shocks] Let Gt+1: = Yt+1∕Yt be gross growth rate of income. 
The sequence 

{
Rt+1,Gt+1

}∞

t=0
 is independent and identically distributed (IID).

These assumptions are similar to Carroll (2020), except that we allow for 
stochastic returns on savings. Note that the asset return Rt+1 and income growth 
Gt+1 are potentially mutually dependent. Due to the iidassumption, the state vari-
ables of the income fluctuation problem (8) are financial wealth at > 0 and cur-
rent income Yt > 0. Exploiting homotheticity (Assumption 1), we can reduce the 
number of state variables to just one, namely the wealth-income ratio (normalized 
wealth) ãt: = at∕Yt. To see this, letting c̃t: = ct∕Yt be the consumption-income 
ratio (normalized consumption), dividing the borrowing constraint (8c) by Yt, we 
obtain 0 ≤ c̃t ≤ ãt. Similarly, dividing the budget constraint (8b) by Yt+1, we obtain

where R̃t+1: = Rt+1∕Gt+1 is the asset return relative to income growth. As for the 
utility function, because

(here we interpret 
∏0

s=1
∙ = 1), assuming Y0 = 1 (which is without loss of  gener-

ality) and � ≠ 1, it follows from (8a) that

where �̃t: = �G
1−�
t . The discussion for � = 1 is similar. Therefore, the problem 

reduces to an income fluctuation problem with CRRA utility, random discount 
factors 

{
�̃t

}∞

t=1
, stochastic returns 

{
R̃t

}∞

t=1
 on wealth, and constant income (Ỹ t ≡ 1).  

The general theory of  income fluctuation problems with stochastic discounting, 
returns, and income in a Markovian setting was developed by Ma et al. (2020). 
Therefore, we immediately obtain the following result. In what follows, we drop 
the time subscript when no confusion arises.

Proposition 1.  Suppose Assumptions 1 and 2 hold, and

Then the income fluctuation problem () has a unique solution. The consumption 
function can be expressed as c(a,Y ) = Y c̃(a∕Y ), where c̃: (0,∞)→ (0,∞) is the 

(9)
ãt+1=at+1∕Yt+1 = (Rt+1Yt∕Yt+1)(at∕Yt−ct∕Yt)+1

= (Rt+1∕Gt+1)(ãt− c̃t)+1

= R̃t+1(ãt− c̃t)+1,

ct=Yt c̃t=Y0

(
t∏

s=1

Gs

)
c̃t

(10)

E0

∞∑
t=0

�
tu(ct) =E0

∞∑
t=0

(
t∏

s=1

�G1−�
s

)
c̃
1−�
t

1−�

=E0

∞∑
t=0

(
t∏

s=1

�̃s

)
c̃
1−�
t

1−�

,

(11) 𝛽E[G1−𝛾 ]<1 and 𝛽E[RG−𝛾 ]<1.
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consumption function of the detrended problem (maximizing (10) subject to (9)), 
which can be computed by policy function iteration.12

Proof.   Applying Theorem 2.2 of Ma et al. (2020) to the iidcase, a sufficient con-
dition for the existence of a solution to the detrended problem is E[𝛽̃] < 1 and 
E[𝛽̃ R̃] < 1, which is equivalent to (11).

4.2.  Tail Behavior of Income and Wealth

We now characterize the tail behavior of income and wealth in the context of 
the income fluctuation problem in Section 4.1.

To make the model stationary, suppose that agents survive to the next period 
with probability v ∈ (0, 1) (perpetual youth model as in Yaari, 1965). Whenever 
agents die, they are replaced by newborn agents. For simplicity, assume that the 
discount factor � in (8a) already accounts for survival probability, and that there is 
no market for life insurance (allowing for life insurance only changes R to R/v and is 
thus mathematically equivalent after reparametrization). Without loss of generality, 
suppose that newborn agents start with income Y0 = 1. Then the income of a ran-
domly selected agent is YT, where T is a geometric random variable with mean 1

1− v
. 

By the assumption on income growth, the log income of a randomly selected agent

is a geometric sum of iidrandom variables, for which we can characterize the tail 
behavior as follows.

Proposition 2.  [Income Pareto exponent] Suppose that P(G > 1) > 0 and 
1 < vE[Gz] <∞ for some z > 0. Then the cross-sectional income distribution has a 
Pareto upper tail, whose exponent is the unique positive solution z = �Y  to

Proof.   See Beare and Toda (2017).

To characterize the tail behavior of wealth, we first note that the normalized 
consumption function c̃ in Proposition 1 is concave and asymptotically linear with 
a specific slope.13

Proposition 3.  [Concavity and asymptotic linearity] Let everything be as in Proposition 
1. Then c̃ is concave and

12See Li and Stachurski (2014) and Ma et al. (2020) for details on policy function iteration.

logYT = log(YT∕Y0)=

T∑
t=1

logGt

(12) vE[Gz]=1.

13Carroll and Kimball (1996) showed the sufficiency of hyperbolic absolute risk aversion (HARA, 
which includes CRRA) for the concavity of the consumption function. Toda (2021) proved the 
necessity.
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Proof.   The concavity of c̃ follows from Proposition 2.5 and Remark 2.1 of Ma et 
al. (2020). The asymptotic linearity of c̃ follows from Ma and Toda (2021, Theorem 
3). Noting that

the limit (13) follows from their Example 2.

Using Proposition 3 and setting � =min
{
(E[�R1−� ])1∕� , 1

}
, for high enough 

asset level, the detrended budget constraint (9) becomes approximately

which is a random multiplicative process (Kesten (1973) process). Under specific 
assumptions, Ma et al. (2020, Theorem 3.3) prove that the upper tail of the sta-
tionary distribution of normalized wealth ãt has a Pareto lower bound. Although 
a sharp characterization of the tail behavior is generally difficult, in our setting it is 
possible to obtain an exact characterization due to concavity and the iidassumption.

Proposition 4.  Let � = min
{
(E[�R1−� ])1∕� , 1

}
 and H = �R̃. Suppose that (i) R is 

thin-tailed (meaning E[Rz] <∞ for all z > 0), (ii) logH is non-lattice (not supported 
on an evenly spaced grid), and (iii) P(H > 1) > 0 and 1 < vE[Hz] <∞ for some z > 0.  
Then the cross-sectional normalized wealth distribution is either bounded or has a Pareto 
upper tail, in which case the exponent is the unique positive solution z = �̃ of

The Pareto exponent for wealth and capital income is then � = min
{
�̃, �Y

}
.

Proof.   As c̃ is concave by Proposition 3, it is in particular Lipschitz continuous. 
Under the maintained assumptions, we can apply Theorem 1.8 of Mirek (2011) to 
deduce that the normalized wealth ã is either bounded or has a Pareto upper tail with 
exponent characterized as the solution to (14), where we have used the asymptotic 
linearity of c̃ established in Proposition 3.

By accounting, capital income (excluding capital loss) is

Using Proposition 3, this quantity is approximately equal to  
�max {R − 1, 0}Y ã . The claim � =min

{
�̃, �Y

}
 then follows because asset 

return R is thin-tailed and at = Yt ãt is the product of two (potentially dependent) 
random variables with Pareto upper tails, which inherits the smallest Pareto expo-
nent by the result in Jessen and Mikosch (2006).

(13) lima→∞

c̃(a)

a
=

{
1− (E[𝛽R1−𝛾 ])1∕𝛾 if E[𝛽R1−𝛾 ]<1,

0 otherwise.

E[�̃ R̃
1−�

]=E[�G1−� (R∕G)1−� ]=E[�R1−� ],

ãt+1≈�R̃t+1 ãt+1,

(14) vE[Hz]=1.

Ycap: =max {R−1, 0} (a−c(a))=max {R−1, 0}Y (ã− c̃(ã)).
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Proposition 4 is significant despite its simplicity. According to the model, we 
always have � ≤ �Y, typically with a strict inequality as we see in the numerical 
example below. This is in sharp contrast to canonical incomplete market general 
equilibrium models such as Aiyagari (1994), where agents can save using only a 
risk-free asset. In such models, the impossibility theorem of Stachurski and Toda 
(2019) implies that the tail behavior of income and wealth is the same, implying 
� = �Y  in our setting.14 Therefore, unlike canonical incomplete market models, our 
model can explain the empirical fact that capital income is more unequal than 
labor income. The key assumption leading to this conclusion is the presence of 
stochastic returns.

We discuss an analytically solvable example to build intuition.

Example 1.  Let Δ > 0 be the length of  time of  one period and the discount factor 
be � = e−�Δ, where 𝛿 > 0 is the discount rate. Suppose income grows at a constant 
rate g > 0, so G = egΔ. Suppose asset return is risk-free, so R = erΔ with r > 0. 
Finally, let the survival probability be v = e−�Δ, where � is the death rate. Then (12) 
becomes

so the income Pareto exponent is �Y = �∕g. (This is the classical result of  Wold 
and Whittle (1957) in discrete-time.) Suppose in addition that − 𝜂 + r(1 − 𝛾) < 0 
so that 𝛽R1−𝛾

< 1. As

solving (14) the normalized wealth Pareto exponent is

assuming r − 𝜂 − g𝛾 > 0. Therefore

so the wealth (hence capital income) Pareto exponent is smaller than the labor 
income Pareto exponent if  the return on wealth r is sufficiently large. In summary, 
we obtain the following result: suppose − 𝜂 + r(1 − 𝛾) < 0 and let �cap, �lab be the 
capital and labor income Pareto exponents. Then

14The original proof in Stachurski and Toda (2019) contained an error; it has been corrected in 
Stachurski and Toda (2020).

1= e−�ΔezgΔ⟺ z=�∕g,

H = (E[�R1−� ])1∕� R̃= (�R)1∕�∕G= e
(
r−�

�
−g)Δ

,

�̃=
��

r−�−g�

𝛼̃ <𝛼Y ⟺

𝜂𝛾

r−𝜂−g𝛾
<
𝜂

g
⟺ r>𝜂+2g𝛾,

(15)

⎧⎪⎨⎪⎩

𝛼cap=𝛼lab=
𝜂

g
if r≤𝜂+2g𝛾 ,

𝛼cap=
𝜂𝛾

r−𝜂−g𝛾
<
𝜂

g
=𝛼lab if r>𝜂+2g𝛾.
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Note that the labor income Pareto exponent �lab = �∕g is highly sensitive to the in-
come growth rate g. However, provided that r > 𝜂 + 2g𝛾, the capital income Pareto 
exponent �cap is not very sensitive to the value of  g because the denominator is 
r − � − g�. This example is consistent with our result in Section 3.2 that the capital 
Pareto exponent is smaller than the labor Pareto exponent but the two values are 
only weakly related.

4.3.  Numerical Example

We further examine the tail behavior of income and wealth using a numerical 
example of the income fluctuation problem (8). Suppose that asset return is iidlog-
normal, so logR ∼ N((� − �

2∕2)Δ, �2Δ), where Δ > 0 is the length of one period, 
� is the expected return, and � is volatility. Suppose every period the agent is “pro-
moted” with some probability, so the income growth rate is 

where p ∈ (0, 1) is the promotion probability and g is the log income growth 
rate conditional on promotion. We parametrize the promotion probability as 
p = 1 − e−Δ∕L, where L is the expected length of time until a promotion. Using 
(12), the labor income Pareto exponent is determined such that 

We set the parameter values as in Table 1. One unit of time corresponds to a 
year and one period is a quarter, so Δ = 1∕4. The preference parameters (discount 
rate and risk aversion) are standard. The death rate of � = 0.025 implies an aver-
age (economically active) age of 1∕� = 40 years. The expected return and volatility 
roughly correspond to the stock market. We set the labor income Pareto exponent 
to �Y = 3, which is roughly the median value in Figure 1. Using the survival prob-
ability v = e−�Δ and (16), the implied value of income growth upon promotion is 
g = 0.0403. The wealth Pareto exponent determined by (14) is then � = 1.201.

To numerically solve the income fluctuation problem (8), we first detrend it as 
in (9) and (10). Suppressing the tildes, the detrended problem becomes

where 
{
Rt, �t

}∞

t=1
 is iid(though Rt and �t are generally correlated). According to Ma 

et al. (2020), the Euler equation is

Gt+1=Yt+1∕Yt=

{
1 with probability 1−p,

eg with probability p,

(16) 1= vE[G�Y ]= v(1−p+peg�Y )⟺�Y =
1

g
log

1−v+vp

vp
.

maximize E0

∑∞

t=0

(
t∏

s=1

�t

)
c
1−�
t

1−�

subject to at+1=Rt+1(at−ct)+1,

0≤ ct≤at,

(17) c
−�
t =max

{
Et[�t+1Rt+1c

−�

t+1
], a

−�
t

}
.
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Let c(a) be the consumption function. Taking the − 1∕�-th power of (17), we obtain

where a� = R(a − c(a)) + 1. Therefore, we can compute the consumption function 
using the following variant of the policy function iteration algorithm: 

(i)	Initialize the consumption function c(a). For example, we can set 
c(a) = min {a, 1 +ma}, where m = max

{
1 − (E[�R1−� ])1∕� , 0

}
 is the the-

oretical asymptotic marginal propensity to consume according to (13).
(ii)	 Update c(a) by the right-hand side of (18), where a� = R(a − c(a)) + 1.
(iii)	Iterate the above step until c(a) converges.

While the above algorithm has no guarantee to converge unlike the “true” pol-
icy function iteration algorithm discussed in Ma et al. (2020), it has the advantage 
of avoiding root-finding and therefore it is fast.

For computational purposes, we discretize the log asset return logR using a 
7-point Gauss-Hermite quadrature and use a 100-point exponential grid for nor-
malized wealth ã that spans [0, 104], with a median grid point of 10. The details 
on the exponential grid are discussed in Gouin-Bonenfant and Toda (2018). After 
solving the individual problem, we apply the Pareto extrapolation algorithm devel-
oped in Gouin-Bonenfant and Toda (2018) to accurately compute the stationary 
(normalized) wealth distribution. Finally, we also simulate an economy with 105 
agents. Figure 4 shows the results.

Figure 4a shows the normalized consumption function c̃(ã) in the range 
ã ∈ [0, 100]. Consistent with Proposition 3, the consumption function is roughly 
linear for high asset level. Figure 4b shows the size distributions of  income Y 
normalized wealth ã = a∕Y  in a log–log plot, both from the theoretical model 
and the simulation. The fact that the tail probability P(X > x) exhibits a straight 
line pattern in a log–log plot suggests that the size distributions have Pareto 
upper tails, consistent with theory. Furthermore, the slope for income is steeper 
than that of  normalized wealth, so wealth (hence capital income) is more 
unequally distributed than labor income.

(18) c(a)=min
{(

E[�Rc(a�)−� ]
)−1∕�

, a
}
,

TABLE 1  
Parameter Values

Parameter Symbol Value

Length of one period Δ 1/4
Discount rate � 0.04
Relative risk aversion � 2
Death rate � 0.025
Expected return � 0.07
Volatility � 0.15
Expected time to promotion L 5
Labor income Pareto exponent �

Y
3
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Finally, Figure 5 shows the income and wealth Pareto exponents when we 
change the income growth rate g in the range g ∈ [0.02, 0.1], fixing other param-
eters. Because the income Pareto exponent is inversely proportional to income 
growth by (16), the labor income Pareto exponent is highly sensitive to income 
growth. On the contrary, the wealth (capital income) Pareto exponent does not 
depend much on income growth by the same intuition as in Example 1. Thus our 
model is consistent with our empirical findings in Section 3.2 that capital and labor 
income Pareto exponents are only weakly related.

Figure 4.  Solution to Income Fluctuation Problem 
[Colour figure can be viewed at wileyonlinelibrary.com]

Figure 5.  Dependence of Income and Wealth Pareto Exponents on g 
[Colour figure can be viewed at wileyonlinelibrary.com].

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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5. C oncluding Remarks

The Pareto exponent characterizes the tail heaviness of size distributions. 
This paper has systematically estimated and documented capital and labor income 
Pareto exponents for 52 countries over half  a century (475 country-year observa-
tions). We have found that the capital income Pareto exponent (median 1.46) is 
substantially and robustly smaller than the labor exponent (median 3.35), suggest-
ing that capital income (hence wealth) is more unequally distributed than labor 
income. This finding has two important implications. First, income inequality 
and wealth inequality are different entities and need to be distinguished in policy 
debates. Second, canonical Rao Aiyagari models that abstract from capital income 
risk—which necessarily imply the same tail behavior for income and wealth dis-
tributions as proved by Stachurski and Toda (2019)—are inadequate for studying 
wealth inequality. Our model in Section 4 provides a stylized example for alterna-
tive modeling.
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